045 202 0186 info@veronaconsulting.it

Domande Frequenti

Cosa e' un pannello solare?

Cosa e' un pannello solare?

Si confonde generalmente il pannello solare con un modulo fotovoltaico. In realtà il pannello solare comprende un'ampia categoria di sistemi tecnologici, che hanno in comune solo il fatto di sfruttare l'energia solare per raggiungere l'obiettivo preposto.


Si possono trovare 4 principali tipi di pannelli solari:



  • Pannello solare termico - riscalda un fluido nell'ambito di un impianto di riscaldamento o produzione di acqua sanitaria

  • Pannello solare fotovoltaico - composto da celle fotovoltaiche, converte direttamente in energia elettrica sfruttando l'effetto fotovoltaico

  • Pannello solare ibrido - esempio di cogenerazione fotovoltaica, con accoppiamento di un pannello solare termico con un pannello solare fotovoltaico

  • Pannello solare a concentrazione - riscalda un fluido per generare con un turbo-alternatore energia elettrica



I primi due pannelli solari sono i più importanti e i più diffusi.


IMPIANTO CON PANNELLI SOLARI TERMICI


Un sistema solare termico normalmente è composto da un pannello che riceve l'energia solare, da uno scambiatore dove circola il fluido utilizzato per trasferirla al serbatoio utilizzato per immagazzinare l'energia accumulata. Il sistema può avere due tipi di circolazione, naturale o forzata.

Circolazione naturale

Schema di un impianto a circolazione naturale:
(A) Entrata dell'acqua fredda;
(B) Serbatoio coibentato;
(C) Pannello solare termico;
(D) Radiazione solare;
(E) Uscita dell'acqua calda.

Nel caso della circolazione naturale a termosifone, per far circolare il fluido vettore nel pannello solare, si sfrutta la convezione. Il liquido vettore riscaldandosi nel pannello solare si dilata e galleggia rispetto a quello più freddo presente nello scambiatore del serbatoio di accumulo. Spostandosi, quindi nello scambiatore posto più alto rispetto al pannello solare cede il suo calore all'acqua sanitaria del secondario. Questa tipologia è più semplice di quella a circolazione forzata. Non esiste consumo elettrico dovuto alla pompa di circolazione e alla centralina solare differenziale presente nel sistema a circolazione forzata. Il fluido vettore usato nel circuito primario è glicole propilenico atossico (comunemente conosciuto come antigelo) miscelato con acqua in una percentuale tale da garantire un'adeguata resistenza al gelo. Il serbatoio viene disposto ad un'altezza maggiore di quella dei pannelli solari a cui è collegato e per ragioni estetiche è del tipo orizzontale ad intercapedine. La circolazione naturale, rispetto a quella forzata, risulta essere più sensibile alle perdite di carico del circuito primario e vengono, quindi, realizzati sistemi kit compatti ove il serbatoio di accumulo è situato molto vicino al pannello solare. Le serpentine possono anche essere due, nel caso si voglia anche preriscaldare l'acqua del serbatoio con integrazione ad un termocamino o caldaia. Si può anche integrare una resistenza elettrica per riscaldare l'acqua in caso di insufficiente o assente (nelle ore notturne) irradiazione solare. Un impianto a circolazione naturale con serbatoio esterno è adatto in regioni con temperature notturne non rigide. Attualmente viene fatta molta attenzione all'impatto visivo di tali sistemi colorando i serbatoi di color tegola oppure disponendoli direttamente a terra. Questo tipo di impianto è adatto a famiglie che hanno un risparmio esiguo, in quanto, non avendo bisogno di energia elettrica o costi gestione impianto il risparmio è al netto da spese aggiuntive.

Circolazione forzata

Schema di un impianto a circolazione forzata:
1) Pannello solare;
2) Regolatore;
3) Pompa ;
4) Pressostato;
5) Serbatoio d'acqua;
6) Altra fonte di calore (caldaia, pompa di calore ecc.).

La circolazione del liquido avviene con l'aiuto di pompe solo quando nei pannelli il fluido vettore si trova ad una temperatura più elevata rispetto a quella dell'acqua contenuta nei serbatoi di accumulo. Per regolare la circolazione ci si avvale di sensori elettrici che confrontano la temperatura del fluido vettore nel collettore con quella nel serbatoio di accumulo (termocoppia). In tali impianti ci sono meno vincoli per l'ubicazione dei serbatoi di accumulo. Normalmente, il circuito idraulico collegato al pannello è chiuso e separato da quello dell'acqua che riscalda, posizionando una serpentina nel serbatoio come scambiatore di calore. Le serpentine possono anche essere due tre o quattro nel caso si voglia anche preriscaldare il fluido dell'impianto di riscaldamento tramite l'acqua del serbatoio o integrazione ad un termocamino o caldaia. Si può anche integrare una resistenza elettrica per riscaldare l'acqua in caso di insufficiente o assente (nelle ore notturne) irradiazione solare. Quest'impianto è consigliato per le zone rigide di montagna e nel caso la famiglia abbia un notevole risparmio, in quanto, consumi di energia e costi gestione impianto incidono sul risparmio dato.


IMPIANTO CON PANNELLI SOLARI FOTOVOLTAICI


Moduli fotovoltaici

I moduli in silicio mono o poli-cristallini rappresentano la maggior parte del mercato; sono tecnologie costruttivamente simili e prevedono che ogni cella fotovoltaica sia cablata in superficie con una griglia di materiale conduttore che ne canalizzi gli elettroni. Ogni cella viene connessa alle altre mediante nastrini metallici, in modo da formare opportuni circuiti in serie e in parallelo. La necessità di silicio molto puro attraverso procedure di purificazione dell'ossido di silicio (SiO2, silice) presente in natura eleva il costo della cella fotovoltaica.

Sopra una superficie posteriore di supporto, in genere realizzata in un materiale isolante con scarsa dilatazione termica, come il vetro temperato o un polimero come il tedlar, vengono appoggiati un sottile strato di acetato di vinile (spesso indicato con la sigla EVA), la matrice di moduli preconnessi mediante i già citati nastrini, un secondo strato di acetato e un materiale trasparente che funge da protezione meccanica anteriore per le celle fotovoltaiche, in genere vetro temperato. Dopo il procedimento di pressofusione, che trasforma l'EVA in mero collante inerte, le terminazioni elettriche dei nastrini vengono chiuse in una morsettiera stagna generalmente fissata alla superficie di sostegno posteriore, e il risultato ottenuto viene fissato ad una cornice in alluminio, che sarà utile al fissaggio del pannello alle strutture di sostegno atte a sostenerlo e orientarlo opportunamente verso il sole.

Si definisce rendimento o efficienza di un modulo fotovoltaico il rapporto espresso in percentuale tra energia captata e trasformata rispetto a quella totale incidente sulla superficie del modulo ed è dunque un parametro di qualità o prestazionale del modulo stesso; esso è quindi proporzionale al rapporto tra watt erogati e superficie occupata, a parità di altre condizioni. Come in tutti i sistemi di conversione energetica, l'efficienza del modulo fotovoltaico è sempre inferiore dell'unità (o 100%) per effetto di inevitabili perdite nel sistema reale.

L'efficienza ha ovviamente effetti sulle dimensioni fisiche dell'impianto fotovoltaico: tanto maggiore è l'efficienza tanto minore è la superficie necessaria di pannello fotovoltaico per raggiungere un determinato livello di potenza elettrica. Inoltre per motivi costruttivi, il rendimento dei moduli fotovoltaici è in genere inferiore o uguale al rendimento della loro peggiore cella.

In particolare il miglioramento nell'efficienza di un modulo fotovoltaico si può ottenere attraverso un processo sempre più spinto di purificazione del materiale semiconduttore utilizzato (tanto più è puro tanto maggiore è la radiazione solare captata e convertita) oppure attraverso l'uso combinato di più materiali semiconduttori che coprano in assorbimento la maggior parte possibile di spettro della radiazione solare incidente. Tuttavia tanto maggiore è l'efficienza tanto maggiori tendono ad essere i costi in quanto più spinto e raffinato diventa il processo di fabbricazione delle celle.

A livello impiantistico, l'efficienza della cella dipende anche dalla temperatura della cella stessa. I dati qui sotto si riferiscono alla temperatura di cella di 25 °C; per le celle in Si cristallino si può considerare una perdita di rendimento dello 0,45 % circa per ogni grado centigrado di aumento della temperatura; una cella in Si monocristallino, alla temperatura di 70 °C ha una perdita di produzione di circa il 25%; questa temperatura è raggiungibile in condizioni di buona insolazione. Ecco perchè i picci di produzione si hanno nei mesi di maggio e giugno, quando c'è buona insolazione senza eccessivo calore.

A causa del naturale affaticamento dei materiali, le prestazioni di un pannello fotovoltaico comune diminuiscono di circa un punto percentuale su base annua. Per garantire la qualità dei materiali impiegati, la normativa obbliga una garanzia di minimo due anni sui difetti di fabbricazione e anche sul calo di rendimento del silicio nel tempo, dove arriva ad almeno 20 anni. La garanzia sulla produzione oggi nei moduli di buona qualità è del 90% sul nominale per 10 anni e dell'80% sul nominale per 25 anni. Discorso a parte merita SunPower, dove tutte le garanzie sono estese a 25 anni. Altre perdite di efficienza sono dovute all'inverter dell'impianto che ha efficienze dell'ordine del 90-95%.





Richiedi informazioni

I campi contrassegnati con * sono obbligatori

Cliccando su "Richiedi informazioni" accetti la nostra privacy policy leggi>

Richiedi un preventivo gratuito e realizza il tuo impianto fotovoltaico a costo zero.

Richiedi Informazioni

Scopri i nostri partner

Per soddisfare le esigenze della clientela, VERONA CONSULTING® ha selezionato i migliori partner per l'efficientamento energetico.

Sunpower
Sunballast
Solaredge
Daikin
Fronius
LG
SolarWorld
SMA
BenQ
Peimar
Panasonic
ZCS
ABB
Goodwe